Episode Selection Meets Token Attribution:
Composing Credit Assignment Across Granularities

Teilo Millet

Independent Researcher

February 2026

Abstract

Reinforcement learning from reasoning traces faces credit assignment at two levels: which
problems deserve gradient (episode level) and which tokens within a solution contributed to
success (token level). MaxRL (Tajwar et al., 2026) addresses the episode level by reweighting
advantages by inverse success rate but treats every token in a successful rollout identically.

We propose a compositional credit assignment framework with a plug-compatible interface:
any episode-level operator that depends only on group rewards composes with any token-level
operator that depends only on per-position uncertainty, without either needing to know about
the other. As one instantiation, we introduce SEPA (Selective Entropy Pooling with Annealing),
a token-level variance reduction transform that pools execution-token surprisal while preserving
planning-token surprisal.

Preliminary experiments (36 runs, ~159k generations) did not reach statistical significance.
The predicted condition ranking appeared at a single early checkpoint but was not sustained in
cumulative metrics, leaving open whether the effect is on learning speed or is simply noise at this
scale. A mechanistic diagnostic on 318k tokens confirmed that SEPA reduces execution-token
surprisal variance by 98% while leaving planning tokens unchanged (Figure 1). The contribution
is twofold: a compositional framework that makes the independence between episode-level and
token-level credit explicit, and SEPA as a concrete module within that framework, validated
mechanistically but with underpowered training outcomes. We release all infrastructure to
enable conclusive testing.

Introduction

Training language models to reason via reinforcement learning faces a credit assignment problem

at two distinct levels.
At the episode level, the training signal must decide which problems deserve gradient. Standard

RL algorithms such as GRPO (Shao et al., 2024) weight all problems by their reward variance
regardless of difficulty. MaxRL (Tajwar et al., 2026) normalizes advantages by the success rate,
giving hard problems gradient proportional to 1/p and recovering the full maximum likelihood

objective that standard RL truncates to first order.
At the token level, the signal must decide which tokens within a successful solution actually

contributed to its success. MaxRL does not address this. Its gradient estimator averages uniformly

over all tokens in successful trajectories:

. 1
9MazRL = 4 > Valogmy(zi |),

pir;=1

where K is the number of successes and 7y is the policy.! In a 200-token reasoning trace, perhaps 5
tokens represent the actual insight: a strategy shift, an error correction, or a structural connection.
The other 195 tokens are routine arithmetic. MaxRL treats them identically.

This paper makes two contributions:

1. A compositional framework with a plug-compatible interface: episode-level operators
depend only on group rewards, token-level operators depend only on per-position uncertainty
(plus an optional structural mask), and any new module at either level composes with the
rest of the stack without redefining it (Section 3).

2. SEPA, a variance reduction transform for the GTPO weighting signal that pools execution-
token surprisal while preserving planning-token surprisal, validated mechanistically but with
underpowered training outcomes (Section 3.4).

We present preliminary experiments testing the framework in a factorial ablation on math
reasoning. Our compute budget (~159k generations) was insufficient to distinguish the conditions
at the observed effect sizes; we report power estimates for a conclusive test.

2 Background

Group Relative Policy Optimization. GRPO (Shao et al., 2024) generates N rollouts per
prompt and uses group-relative advantages A; = r; — 7. It weights all problems equally and applies
the same scalar advantage to every token.

Maximum Likelihood RL. The ML objective decomposes as a harmonic sum over pass@Qk
(Tajwar et al., 2026): VJui(z) = Y50, + V pass@k(z). Standard RL keeps only k=1. MaxRL

recovers the full sum via _
AMazRL _ T (2)
! T+e
For binary rewards with K successes out of N rollouts, correct completions receive advantage
(N—K)/K and incorrect completions receive —1.

Entropy-Weighted Token Credit. GTPO (Tan et al., 2025) reshapes the scalar group advan-
tage into per-token rewards using the policy’s own entropy. The formulation separates rollouts
into correct (OT) and incorrect (O7) sets and defines a token-level reward 7;; = ajr; + ag -
(Hi+/>) Hiy) - di, where H;; is the true policy entropy at position ¢. Our implementation uses
surprisal (the negative log-probability of the sampled token) as a cheaper proxy; see Section 3.2.

Process Reward Models. PRMs (Lightman et al., 2023; Wang et al., 2023) score intermediate
reasoning steps but require step-level annotations and a separate model. Our approach requires no
annotations, using the model’s own surprisal as a proxy for decision importance.

3 Method: A Composable Credit Assignment Stack

We propose four independently toggleable layers (Table 1), each addressing a different failure mode.
Each layer is defined below in dependency order: later layers build on earlier ones.

"We use my throughout for the policy; Tajwar et al. use mg to emphasize the connection to maximum likelihood
estimation.

Table 1: The composable credit assignment stack. Each layer operates at a different granularity
and addresses a distinct failure mode. Layers compose by sequential application.

Layer Level What it decides Failure mode addressed

MaxRL Episode Which problems get gradient FEasy problems dominate gradient
GTPO Token Which tokens get credit All tokens weighted equally
HICRA Token (structural) Amplify planning tokens No structural prior

SEPA Token (surprisal) Clean the uncertainty signal — Execution noise in surprisal

3.1 Episode Level: MaxRL

Given N rollouts with binary rewards for a prompt, we compute episode-level advantages via
Equation 2. When 7 < € (no successes), all advantages are zero, because there is nothing to learn
from a group where every rollout failed. Hard problems (small success rate 7) receive advantages
scaled by 1/7, recovering the maximum likelihood gradient.

3.2 Token Level: GTPO Surprisal Weighting

The episode-level advantage A; is a scalar for the entire completion. To differentiate within the
completion, we need a per-token signal. GTPO (Tan et al., 2025) treats tokens where the policy
distribution spreads across many plausible continuations (high entropy) as decision points that
receive amplified credit, and treats tokens where the next token was near-certain (low entropy) as
routine.

Surprisal vs. entropy. A precise distinction is needed because our implementation departs from
the original formulation. Tan et al. weight tokens by the true policy entropy, H(t) = — >, po(v |
ctx;) log pg(v | ctx¢), which measures the spread of the model’s distribution over the full vocabulary
at position t. Computing this requires access to the full logit vector at each position. Surprisal is the
information content of the single token actually sampled: S(t) = —log pg(tsampled | ctx¢). Surprisal
is available directly from the sampling log-probabilities but is a noisier signal. The approximation
breaks down in two directions. A token can have high surprisal but low entropy: if the model
concentrates 95% of probability on one continuation and the sampler draws from the 5% tail, then
the surprisal is high but the distribution was confident. Conversely, a token can have low surprisal
but high entropy: if the model spreads probability uniformly across many continuations and the
sampler happens to draw the mode, then the surprisal is low but the distribution was genuinely
uncertain. In both cases, surprisal misrepresents the distribution’s uncertainty. Surprisal adds a
layer of noise on top of a problem that already exists with true entropy: execution tokens can have
genuinely high distributional uncertainty for reasons unrelated to reasoning quality (e.g., the model
spreading probability across equivalent phrasings of an arithmetic step). With true entropy, such
tokens would still receive disproportionate GTPO credit. Surprisal makes this worse by introducing
sampling artifacts (a peaked distribution can produce a high-surprisal outlier), but the core issue is
that high uncertainty at execution tokens reflects procedural ambiguity, not strategic importance.
SEPA addresses both sources of noise. Our generation pipeline stores only the sampled token’s
log-probability, not the full logit vector, so we operate on the noisier signal.

Table 2: Canonical GTPO (Tan et al., 2025) vs. our implementation. Each row is an independent
simplification.

Aspect Canonical GTPO Our implementation

Signal True entropy H(t) = =) plogp Surprisal S(t) = — log p(tsampled)
Partition Separate O /O~; inverse-H for O~ Unified; advantage sign for directionality
Shaping Additive: 7 = ay7 + ag%dt Multiplicative: A(t) = A; - w(t)
Normalization Sum over sequences at position ¢ Mean over all tokens; clamped >0

Our implementation uses surprisal as the weighting signal.? The GTPO weight at position ¢ is
_ S(t) GTPO 1\ _ 4.
w(t) = max(0, 1+ 5 1)), A (t) = A; - w(t), (3)

where S is the mean surprisal across the completion. Tokens with above-average surprisal receive
amplified advantages; tokens with below-average surprisal receive dampened ones. The core prin-
ciple is preserved: uncertain positions get more credit. The approximation is that we measure
uncertainty through the sampled token rather than the full distribution.

Table 2 summarizes the differences between the original GTPO formulation and our implemen-
tation.

3.3 Planning Token Identification and HICRA

Both HICRA and SEPA require identifying which tokens correspond to planning (high-level strate-
gic reasoning) vs. ezxecution (routine procedural steps). This distinction is grounded in the two-
phase learning dynamics reported by Wang et al. (2025): RL training first consolidates procedural
reliability (execution-token entropy drops sharply), then shifts to exploration of strategic planning
(semantic diversity of planning tokens increases). Once procedural skills are mastered, the bottle-
neck for improved reasoning is strategic exploration. Current RL algorithms apply optimization
pressure agnostically across both.

Strategic Gram detection. Wang et al. introduce Strategic Grams (SGs) as a functional proxy
for planning tokens: n-grams (n € [3,5]) that function as semantic units guiding logical flow (de-
duction, branching, and backtracing). Their pipeline identifies SGs via (1) semantic clustering of
n-grams using sentence embeddings, (2) corpus-level frequency analysis (Cluster Document Fre-
quency), and (3) filtering for the top 20% most frequent clusters. Our implementation uses a
simplified variant: a curated list of 18 strategic phrases matched via word-boundary regex over
sliding token windows.? This produces a binary mask 1p1.,(t) € {0,1} for each token.

The planning mask as a swappable component. The planning mask is the foundation on
which both HICRA and SEPA stand. If the mask misidentifies tokens (labeling routine execu-
tion as planning or missing genuine strategic moments), then both methods operate on corrupted

*The original GTPO formulation also separates rollouts into correct (O1) and incorrect (O~) sets with different
weighting strategies for each. Our implementation applies the same weighting to all rollouts, using the group advantage
sign for directionality. This is a second simplification beyond the entropy-to-surprisal substitution.

3The 18 phrases, grouped by category: hesitation: “wait let me,” “let me think,” “on second thought”; verification:
“let me check,” “let me verify,” “is this right,” “double check”; backtracking: “try another approach,” “go back and,”
“start over,” “that’s not right,” “that doesn’t work”; alternatives: “another way to,” “or we could,” “what if we”;
metacognition: “notice that,” “the key is,” “the key insight.”

signal. Our regex-based detector is simpler and less principled than the full SG pipeline. The
framework is designed so that the mask is a swappable module: any classifier that produces a bi-
nary planning/execution partition over tokens (learned, attention-based, or the full SG pipeline)
can be substituted without changing anything else in the stack.

HICRA advantage. Given the planning mask, HICRA (Wang et al., 2025) amplifies planning-
token advantages after GTPO weighting:

AHICRA () — AGTPO(1y 4 o |AGTPO (1) 1, (h). (4)

For positive advantages, planning tokens are amplified by factor (14«); for negative advantages,
the penalty is reduced by factor (1—«). The sign is never flipped. Wang et al. report consistent
improvements of 2-6 points on math benchmarks across multiple model families.

3.4 SEPA: Selective Entropy Pooling with Annealing

SEPA uses the same planning mask as HICRA but operates at a different point in the pipeline with
a different mechanism. Where HICRA acts after GTPO weighting to boost planning advantages,
SEPA acts before GTPO weighting to clean the surprisal signal that GTPO consumes.

Entropy-weighted credit assignment is noisy in the execution region regardless of how entropy
is measured. Execution tokens typically have low uncertainty (predictable continuations), but
some execution tokens have genuinely high uncertainty for reasons unrelated to reasoning quality:
the model choosing between two equivalent phrasings of an arithmetic step, for instance. These
tokens receive disproportionate GTPO amplification even though the choice does not affect solution
correctness. Using surprisal rather than true entropy makes this worse (Section 3.2), but the core
problem is that high uncertainty at execution tokens reflects procedural ambiguity, not strategic
importance.

SEPA leaves planning tokens alone and compresses execution tokens toward their group mean.
Given the execution set € = {t : 1pan(t) = 0} and its mean surprisal Sg,

SSEPA(p) _ {S(t) if 1pan(t) =1 (planning: unchanged), 5)
A-Sg+ (1=X)-S(t) otherwise (execution: pooled),

where A € [0, 1] is the pooling strength.

Worked example. Consider a 10-token completion where tokens 3 and 7 are planning tokens.
The raw surprisal values are:

Token 1 2 3 4 5) 6 7 8 9 10

Role exec exec plan exec exec exec plan exec exec exec

S(t) 0.2 0.3 1.8 0.1 0.9 0.2 2.1 0.3 0.1 0.2

Token 5 is an execution token with surprisal 0.9, perhaps because the model chose between two
equivalent ways to write a subtraction. Without SEPA, GTPO amplifies token 5 nearly as much
as the planning tokens at positions 3 and 7.

With SEPA at A=1, all eight execution-token surprisals are replaced by their mean Sg = 0.29.
Token 5 drops from 0.9 to 0.29; tokens 3 and 7 remain at 1.8 and 2.1. When GTPO then weights
by S(t)/S, planning tokens dominate the weighting.

Training schedule. Applying full pooling (A=1) from the start would modify the surprisal dis-
tribution before the model has established a stable baseline. We anneal X linearly from 0 to 1 over
the course of training, with an optional delay of d steps (no pooling during the delay) so the model
first establishes a baseline distribution. A correctness gate prevents SEPA from activating until
the model reaches a minimum solve rate; once the gate opens, it stays open permanently to avoid
oscillation.* In our experiments we used the linear schedule with d=10 and a correctness gate at

10%.

Execution variance as a phase transition signal. The linear schedule assumes the transition
from procedural consolidation to strategic exploration happens proportionally to training steps.
This assumption is crude: the transition depends on the model, the task, and the data, not the
wall clock. A more principled alternative is to let the model’s own behavior determine when to
intervene. Wang et al. (2025) describe two learning phases (procedural consolidation, then strategic
exploration) but observe the transition post hoc. Execution-token surprisal variance provides a
direct readout of this transition: when the model has mastered routine procedures, execution-
token surprisal concentrates (variance drops), and the remaining variance lives in planning tokens.
An adaptive schedule that ties A to execution variance would detect this transition automatically,
increasing pooling strength when the model’s behavior indicates that procedures are stable, without
requiring a hand-tuned step count. This means SEPA could generalize across tasks and model sizes
without re-tuning the schedule, because the trigger is intrinsic to the learning dynamics rather
than extrinsic to the training clock. We implemented such a schedule (using an exponential moving
average of execution variance), but at our training length the variance signal was too noisy to
evaluate it; see Section 5.

SEPA and HICRA: complementary, not competing. Both use the planning mask 1j.n,
but they operate at different points in the pipeline with different mechanisms. SEPA operates
before GTPO: it reduces execution surprisal variance so that GTPO weighting is less noisy (noise
reduction). HICRA operates after GTPO: it amplifies the already-weighted planning advantages
(signal amplification). These are complementary: SEPA cleans the input to GTPO, and HICRA
boosts the output. The full composition would be SEPA — GTPO — HICRA, applying noise
reduction and signal amplification simultaneously. Our current implementation supports only one
or the other per run; in our experiments, each condition used HICRA or SEPA, not both. Testing
the full three-stage composition is a natural next step.

3.5 Instantaneous Independence, Dynamic Coupling

The two levels compose by sequential application: MaxRL produces the episode advantage A;, then
SEPA+GTPO distribute it across tokens. The final token-level advantage factorizes as

Afull(t) — AMaxRL . wSEPA(t) (6)
i .
At any single training step, the two factors are computed from disjoint inputs:

. AZM arRL depends on rewards only (the group success rate).

SEPA (t)

o w depends on token surprisal only (the model’s per-position uncertainty), given a

fixed ;.

4If the gate toggled on and off with batch-level noise in correctness, then the surprisal distribution would shift
discontinuously between steps, destabilizing training.

Neither reads the other’s output. The factorization in Equation 6 is exact, not approximate; the
two transforms are instantaneously independent once A is determined.

One qualification: SEPA’s correctness gate (Section 3.4) sets A\; = 0 until the model’s solve rate
exceeds a threshold, which means \; depends on reward history during the startup phase. Once the
gate opens (permanently), \; follows a deterministic schedule that depends only on the step count
(linear) or execution-token variance (adaptive), neither of which reads the current step’s rewards.
The independence claim holds strictly after gate opening; before that, the token-level operator is
trivially inactive (A\; = 0, so w(t) = 1 for all t).

The interface contract. The value of this factorization is not the multiplication itself but the
constraint it imposes on module design.

Definition 1 (Composable credit assignment) An episode-level operator f is any function
f RN — RN that maps group rewards to per-completion advantages, depending only on the
reward vector (ri,...,rn). A token-level operator g is any function g : RT x {0,1}7 — RL,
that maps per-position uncertainty signals and an optional structural mask to non-negative token
weights, depending only on the model’s per-position distribution (entropy, surprisal, or attention)
and the mask. The two operators compose by multiplication: A (t) = f(r); - g(s,m);. Because f
reads only rewards and g reads only per-position signals, any new module at either level composes
with the rest of the stack without modification.

This means that replacing MaxRL with a different episode-level selector, or replacing SEPA with
a different surprisal transform, requires no changes to the other level. The contract turns the
factorization from a mathematical observation into a design principle for building and ablating
credit assignment components independently.

Across training steps, the two levels are dynamically coupled through the shared model parame-
ters 0. Token-level credit assignment (SEPA) changes which behaviors are reinforced, which changes
the model, which changes future success rates, which changes MaxRL’s episode-level reweighting.
Conversely, MaxRL’s problem reweighting changes which problems the model improves on, which
changes the surprisal distribution that SEPA operates on.

This is the standard structure of modular systems with shared state: no direct coupling at each
step, but indirect coupling through state that evolves over time. The two levels can be toggled in-
dependently (any combination works), and each addresses a failure mode the other cannot: MaxRL
cannot differentiate tokens within a rollout, and SEPA cannot reweight problems by difficulty.

Algorithm 1 shows the complete pipeline for one training step, making explicit the order of
operations and the inputs each module consumes.

4 Experiments

4.1 Design

We tested the framework in a factorial ablation crossing episode-level advantage (GRPO, MaxRL)
with token-level transform (none, GTPO+HICRA, GTPO+SEPA), yielding 5 conditions (Table 3).

Setup. Qwen3-4B-Instruct-2507 fine-tuned with LoRA (rank 64) on math reasoning with binary
correctness reward. 16 problems per step, 16 rollouts per problem (256 generations/step), temper-
ature 0.7, max 2048 tokens. AdamW with Ir = 5 x 107°. GTPO 3 = 0.1, HICRA « = 0.2, SEPA
annealing over 100 steps with 10-step delay.

Table 3: Experimental conditions.

ID Episode-level Token-level Purpose

Cl1 GRPO None (flat) Baseline

C3 GRPO GTPO+HICRA Token-level comparator
C4 GRPO GTPO+4+SEPA Core claim (SEPA)

C5 MaxRL None (flat) Episode-level replication
C8 MaxRL GTPO+SEPA Episode + token (tested)

Table 4: Correctness rate at step 10 (lean campaign, 4 seeds per condition). All differences fall
within noise (+2%).

Condition Correct rate Std

C1: GRPO + none 32.9% +2.1%
C3: GRPO + GTPO+HICRA 33.2% +1.0%
C4: GRPO + GTPO+SEPA 33.4% +0.7%
C5: MaxRL + none 34.5% +1.3%
C8: MaxRL + GTPO+SEPA 35.1% +1.0%

Budget. Due to compute constraints, we ran two campaigns:
o Pilot: all 8 conditions (including C2, C6, and C7) x 2 seeds x 20 steps = 16 runs.
o Lean: 5 conditions x 4 seeds x 12-16 steps (truncated by budget) = 20 runs.

Total: 36 runs, ~622 training steps, and ~159k generations.

4.2 Results

No significant separation. All conditions clustered within +2 percentage points of each other
throughout training (Table 4). At step 10 of the lean campaign (the latest step where all 20 runs
had data), correctness rates ranged from 32.9% to 35.1%.

Directional trends (point estimates). The ordering at step 10 matched the predicted ranking:
C8 (MaxRL+SEPA) > C5 (MaxRL alone) > C4 (SEPA alone) > C3 (HICRA) > C1 (baseline),
though no pairwise difference was statistically significant. In the pilot campaign (step 19, 2 seeds),
conditions converged to ~50% and the ordering dissolved.

Area under the learning curve. If the effect is on learning speed rather than final accuracy,
then the right metric is cumulative sample efficiency: the area under the correctness curve (AUC).
We computed trapezoidal AUC per run over two windows (Table 5) and report bootstrap 95%
confidence intervals on the normalized AUC (mean correctness rate averaged over the training
window).

With a 10-step delay and a 100-step linear ramp, A reached only 0.05 at step 15 and never
exceeded 0.10 across all experiments; SEPA operated at less than 10% of its designed strength
throughout. These experiments test whether SEPA produces a detectable signal at less than 10%
of its designed operating strength; they do not test the method at its intended configuration.
The AUC analysis showed smaller differences than the step-10 snapshot: all conditions fell within a

Table 5: Normalized AUC (mean correctness rate over training window) with 95% bootstrap Cls.
Steps 0-10: 6 runs per condition (pilot + lean). Steps 0-15: 3-4 runs per condition (lean only,
truncated).

Condition Steps 0-10 Steps 0-15

C1: GRPO + none 43.9% [43.8, 44.1] 41.4% [41.3, 41.6]
C3: GRPO + GTPO+HICRA 44.1% [43.8, 44.5] 41.8% [41.5, 42.1]
C4: GRPO + GTPO+SEPA 44.0% [43.7, 44.2] 41.8% [41.6, 42.0]
[] []
[] []

C5: MaxRL + none 44.2% [43.8, 44.6] 41.6% [41.4, 42.0
C8: MaxRL + GTPO+SEPA 44.0% [43.6, 44.4] 41.2% [40.8, 41.6

0.3pp band at steps 0-10 and a 0.6pp band at steps 0-15, with overlapping confidence intervals. No
pairwise delta excluded zero at steps 0-10. At steps 0-15, GRPO+SEPA (C4) showed a marginally
significant advantage over baseline (4+0.4pp, 95% CI [0.1, 0.6]), but this is a single comparison
among many. The predicted ranking (C8 first) did not appear in AUC terms.

Mechanistic diagnostic: does SEPA reshape the surprisal distribution? Independent
of the correctness signal, we verified directly that SEPA operates as designed. We extracted per-
token surprisal values from 2,560 generations (16 seeds x 20 steps x 8 generations/step; 318k
tokens total) logged during a prior MaxRL+SEPA campaign, reconstructed the planning mask via
strategic gram detection, and compared the raw surprisal distribution (A=0) against the pooled
distribution (A=1). The mask labeled 9,899 of 318,225 tokens (3.1%) as planning, with at least one
planning phrase detected in 1,655 of 2,560 generations (65%). The low planning ratio is consistent
with the expected structure of math reasoning traces, where most tokens are routine computation.

Figure 1 shows the result. Before pooling, execution and planning tokens had nearly identical
surprisal distributions (means 0.645 and 0.677), with execution variance 0.614. After pooling,
execution-token variance dropped to 0.013: a 98% reduction. Planning tokens were unchanged.
The execution distribution collapsed to a narrow spike around the execution mean; the planning
distribution retained its original spread across [0, 4].

This confirms the mechanism: SEPA reduces execution-token surprisal variance so that GTPO
weighting concentrates credit on planning tokens. The open question is whether this downstream
concentration produces a measurable training signal at the effect sizes and training lengths we
tested.

Power analysis. Prior paired experiments estimated an effect size of ~(0.2 percentage points
for the SEPA/HICRA comparison, requiring ~23k generations per arm for 80% power. Our lean
campaign provided ~5k generations per condition at step 10. A conclusive test of the token-level
hypothesis would require roughly 4-5x our current budget.

5 Discussion

Credit assignment may affect speed, not ceiling. The step-10 snapshot showed the predicted
ranking (C8 > C5 > C4 > C3 > C1), but the AUC analysis (Table 5) revealed this to be an artifact
of measuring at a single point: integrated over the training curve, all conditions fell within a 0.3pp
band with overlapping confidence intervals.

(a) Before SEPA (A =0) (b) After SEPA (A=1)

Exec var = 0.614 Execution (pooled) Exec var = 0.013
Planning (unchanged) (98% reduction)
4 - 4
23] I
] Execution (n=308,326)
qCJ Planning (n=9,899)
[a]

0 T T T T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Surprisal S(t) = —log pe(t) Surprisal 5(t)

Figure 1: Surprisal distributions before and after SEPA pooling (318k tokens, 16 seeds). (a) Before:
execution (blue) and planning (orange) tokens overlap broadly. High-surprisal execution tokens
receive disproportionate GTPO amplification. (b) After (A=1): execution tokens collapse to their
mean (variance 0.614 — 0.013, 98% reduction). Planning tokens are unchanged. GTPO weighting
now concentrates credit on planning tokens.

This does not rule out a speed effect; it means our runs were too short to detect one via AUC. If
the stack helps models learn faster rather than learn better, then the effect would appear as a wider
AUC gap in early training that closes as conditions converge. With only 10-15 steps of usable data
and A never exceeding 0.10 (pilot) or 0.06 (lean), the mechanism reached less than a tenth of its
designed strength. A meaningful AUC comparison requires runs long enough for the early-training
advantage to accumulate before convergence erases it.

Token-level credit assignment methods are typically evaluated by final performance after a
fixed training budget. If the benefit is faster convergence, then methods that appear equivalent at
convergence may differ substantially in sample efficiency, and the right metric is area under the
learning curve, not a point estimate.

What we planned vs. what we found. We began with the hypothesis that SEPA would
produce a measurable correctness improvement over HICRA and that composing it with MaxRL
would yield the best overall condition. We designed a 2 x 4 factorial ablation with five hypotheses,
eight conditions, and a target budget of 64 runs at 100 steps each (~1.6M generations).

The experiment evolved in three phases. First, a pilot (16 runs, 20 steps) validated that all
conditions ran correctly but showed no separation: every cell landed within +2% of every other.
Second, we cut the design from 8 conditions to 5 and from 8 seeds to 4 to reduce compute. Third,
the lean campaign was terminated at step 12-16 when compute budget was exhausted.

At that point we had ~159k of the planned 1.6M generations. The original hypothesis was not
supported, nor was it refuted. What emerged instead was the ranking in early training that dissolved
as conditions converged. This shifted the paper from a claim that SEPA improves correctness to a
composable framework with preliminary evidence that credit assignment may affect learning speed.

We report this trajectory because the reframing was forced by the data, not constructed after
the fact. The original hypotheses remain testable with more compute; the speed hypothesis is new
and was not anticipated by the original design.

10

The framework contribution stands independent of the empirical result. The compos-
able stack (separating episode-level from token-level, and within token-level separating surprisal
cleaning from advantage boosting) is a useful abstraction regardless of whether SEPA ultimately
outperforms HICRA. It enables systematic ablation of credit assignment components and clarifies
what each mechanism does.

Why the signal may be small. The most likely explanation is training length. Our runs
reached 1220 steps of a 100-step annealing schedule (with a 10-step delay), so A never exceeded
0.10. Model capacity may also matter: at 4B parameters with rank-64 LoRA, the model may learn
to reason well enough that advantage computation details are secondary to raw problem exposure.
The task itself may be a factor: math problems with binary reward may not produce enough
variation in planning-token surprisal for surprisal-based methods to differentiate themselves.

What would be needed. A conclusive version of this experiment would require:
» ~8 seeds per condition (vs. 4).
e ~100 steps per run (to let SEPA fully anneal).
o A larger model or harder task to increase the room for credit assignment to matter.
o Logging per-token surprisal distributions to test the mechanistic hypothesis directly.

o Logging full logit vectors for at least one run to decompose execution-token variance into
genuine distributional entropy and sampling noise, directly resolving how much of the variance
SEPA removes is an artifact of the surprisal approximation vs. a real property of the policy.

We estimate this at ~800k—1M generations total, roughly 5-6x our current budget.

Automatic phase detection. The adaptive A schedule described in Section 3.4 connects to
a broader observation: SEPA does not just clean the surprisal signal; it provides a readout of
training phase via execution-token variance. When execution variance is high, the model has not
yet consolidated procedures, and pooling would distort a still-evolving distribution. When execution
variance drops, procedural skills are stable, and the remaining surprisal variation lives in planning
tokens. The adaptive schedule closes the loop by using this readout to control the intervention,
replacing an extrinsic step count with an intrinsic behavioral signal. At our training length, the
variance estimate (via exponential moving average) was too noisy to evaluate this schedule. Testing
whether it outperforms linear annealing, and whether it generalizes across tasks without re-tuning,
requires the longer runs described above.

6 Limitations

o Planning mask quality. Our regex-based strategic gram detector (18 hand-curated phrases)
is simpler than the full semantic clustering pipeline (Wang et al., 2025) and has not been
validated against human annotations. The failure modes are asymmetric, and this asymmetry
points directly at the highest-value improvement. False negatives (planning tokens mislabeled
as execution) are actively destructive: SEPA pools away their surprisal signal, inverting
the intended effect. False positives (execution tokens mislabeled as planning) are benign:
SEPA simply leaves their noise unchanged. This means the mask’s recall on planning tokens

11

matters more than its precision, and the first priority for improving the stack is reducing false
negatives. The mask also misses implicit planning: a model may shift strategy mid-sequence
without producing any of the 18 trigger phrases. A learned or attention-based detector that
captures implicit planning would address both failure modes. We designed the mask as a
swappable component (Section 3.3) specifically to enable this upgrade.

o Surprisal vs. entropy. Our GTPO implementation uses surprisal (—logp of the sampled
token) rather than the true policy entropy that the original formulation specifies (Tan et al.,
2025), and does not separate rollouts into correct/incorrect sets. Surprisal compounds a
problem that exists even with true entropy (high-uncertainty execution tokens receiving dis-
proportionate credit) by adding sampling artifacts from peaked distributions (Section 3.2).

e Insufficient compute. Our primary results are not statistically significant. We report them
as directional evidence, not conclusions.

e Single model and task. Qwen3-4B on math reasoning only.

¢ Truncated runs. The original design called for 100 steps per run; we reduced to 40 for the
lean campaign and then cut short at step 12-16 because of compute budget exhaustion.

7 Conclusion

We proposed a composable framework for credit assignment in RL for reasoning that separates two
complementary levels: episode-level objective selection (MaxRL) and token-level credit distribution
(SEPA+GTPO). The framework provides a systematic way to ablate credit assignment components
and understand what each contributes.

We introduced SEPA, which reduces execution-token surprisal variance before surprisal-based
weighting. A mechanistic diagnostic confirmed that SEPA reduces execution variance by 98% while
leaving planning tokens unchanged (Figure 1). The theoretical argument for the composition is that
MaxRL decides which problems get gradient and SEPA4+GTPO decides which tokens get credit;
neither interferes with the other. Beyond variance reduction, execution-token surprisal variance
may serve as an intrinsic signal for detecting the procedural-to-strategic phase transition, enabling
an adaptive schedule that requires no hand-tuned step count; this is architecturally supported but
untested at our training scale.

Our experiments showed that C8 (MaxRL+SEPA) ranked first at a single early checkpoint,
though this ordering did not persist in cumulative metrics and did not reach statistical significance
at the scale tested. A conclusive test requires approximately 5x more compute. We release the
framework and experimental infrastructure to enable that test.

References

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman, J.,
Sutskever, 1., and Cobbe, K. (2023). Let’s verify step by step. arXiv preprint arXiv:2305.20050.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and
Guo, D. (2024). DeepSeekMath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

12

Tajwar, F., Zeng, G., Zhou, Y., Song, Y., Arora, D., Jiang, Y., Schneider, J., Salakhutdinov, R.,
Feng, H., and Zanette, A. (2026). Maximum likelihood reinforcement learning. arXiv preprint
arXiw:2602.02710.

Tan, H., Wang, Z., Pan, J., Lin, J., Wang, H., Wu, Y., Chen, T., Zheng, Z., Tang, Z., and Yang,
H. (2025). GTPO and GRPO-S: Token and sequence-level reward shaping with policy entropy.
arXiv preprint arXiv:2508.04349.

Wang, H., Xu, Q., Liu, C., Wu, J., Lin, F., and Chen, W. (2025). Emergent hierarchical reasoning
in LLMs through reinforcement learning. arXiv preprint arXiv:2509.03646.

Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y., Chen, D., Wu, Y., and Sui, Z. (2023). Math-
shepherd: Verify and reinforce LLMs step-by-step without human annotations. arXiv preprint
arXiv:2312.08935.

13

Algorithm 1 One training step of the composable credit assignment stack. Each layer is indepen-
dently toggleable. Our experiments tested SEPA or HICRA per condition, never both simultane-
ously; the three-stage combination (SEPA — GTPO — HICRA) is untested.

Require: Prompt z, rollouts {z1,..., 2y} with rewards {ri,...,ry}
Require: Per-token log-probs ¢; ; = log pg(zit | zi<t,)
Require: Schedule parameters: \; from SEPA controller, 3, «

1: // Episode-level: depends only on rewards
2: T % Zl T
3: if MAXRL then
4: Aj <« (ri—7)/(F+¢€) for each i
5: else
6: A < r; —7 for each i (GRPO)
7: end if
8:
9: // Token-level: depends only on per-position uncertainty + mask
10: for each rollout ¢ do
11: S < —4;; for each token ¢ (surprisal as entropy proxy)
12: my < DETECTPLANNING(z;) (strategic gram mask)
13:
14: // SEPA: pool execution surprisal (before GTPO)
15 E<+ {t:my=0}); Se<+ mean({S;;:t€&})
16: for each token t € £ do
17: S@t — A - Sg + (1 —)\t) . Sz‘,t
18: end for
19:
20: // GTPO: weight by (cleaned) surprisal
21: S; < mean({S;+})
22: for each token ¢ do
23: wy maX(O, 1+ B(Sit/Si — 1))
24: A@t — A -wy
25: end for
26:
27. // Optional HICRA: amplify planning advantages (after GTPO)
28: for each token ¢ where m; = 1 do
29: Aiﬂg — Am + o |Ai,t’
30: end for
31: end for
32:

33: // Policy gradient update
34: § Zz}t Air-Vologmg(ziy | zi<t, x)
35: 0+ 0—n-g

14

	Introduction
	Background
	Method: A Composable Credit Assignment Stack
	Episode Level: MaxRL
	Token Level: GTPO Surprisal Weighting
	Planning Token Identification and HICRA
	SEPA: Selective Entropy Pooling with Annealing
	Instantaneous Independence, Dynamic Coupling

	Experiments
	Design
	Results

	Discussion
	Limitations
	Conclusion

